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Abstract 
 
A finite element (FE) model, which is based on a transfer matrix analysis and local flexibility theorem, is introduced 

for crack identification of a static (non-rotating) rotor with an open crack. Through numerical simulation, the effects of 
crack location and crack depth on the mode shapes and the changes in the eigenfrequencies of the cracked rotor are 
investigated. A crack identification algorithm that makes use of the translations of the first mode at two symmetric 
points and the contour diagram of crack location versus crack depth for the first two given normalized eigenfrequencies 
is proposed to estimate the crack location and depth in the rotor. Two illustrative examples are demonstrated and com-
pared for availability and validity of the proposed algorithm. 
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1. Introduction 

One form of damage that can lead to catastrophic 
failure if undetected is fatigue cracking of the shaft. 
Thus, the early detection of cracked rotor in engineer-
ing practices is significantly important for the reliabil-
ity and durability of large rotating machinery. In ef-
fect, fault diagnosis and condition monitoring of 
cracked rotor has been given more and more attention 
in recent years [1-6]. For the time being, research on 
cracked rotor still remains at the theoretical stage, and 
most of the previous research studies only involve 
crack detection in a rotor and not the crack location 
and depth. 

A static (non-rotating) rotor with an open crack can 
be considered simply as a supported beam. As a con-
sequence, research in relation to non-rotating struc-
tures such as beams and columns is useful for locat-
ing and estimating the severity of cracks in a rotor [7-

13]. Adams found that a state of damage could be 
detected by the reduction in stiffness and an increase 
in damping, whether the damage was localized (as in 
a crack) or as many microcracks distributed through-
out the bulk of the specimen [14]. Using the recep-
tance technique and the Taylor series expansion, 
Cawley and Adams showed that the ratio of the fre-
quency changes in the two modes is only a function 
of the damaged location, respectively [15]. In Ref. 
[16], the effect of a crack on the deformation of a 
beam has been considered similar to that of an elastic 
hinge, and the local flexibility due to the crack is 
computed with fracture mechanics methods and 
measured experimentally. Rizos estimated the crack 
location and depth with satisfactory accuracy from 
the measured amplitudes at two points of the structure 
vibrating at one of its natural modes, the respective 
vibration frequency, and identified an analytical solu-
tion of the dynamic response [17]. For a rotor re-
moved from service, Inagaki used natural vibration 
and the static deflection analysis to find the crack size 
and location [18]. Meanwhile, Rajab presented ana-
lytical expressions and derived the curves relating the 
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crack depth and location in a cracked Timoshenko 
shaft to the changes in the natural frequencies. Its 
numerical simulation showed that knowledge of the 
changes in the first three natural frequencies relative 
to the uncracked shaft is sufficient in estimating the 
crack location and depth in the shaft [19]. By pertur-
bation theory and transfer matrix analysis, Gudmund-
son calculated the variation of eigenfrequencies due 
to a crack on a cantilever beam [20, 21]. Following 
Gudmundson, Gounaris proposed a finite element 
model using the transfer matrix method and local 
flexibility theorem. To consider the discontinuity 
deformation due to the crack on the beam, he adopted 
two different shape functions for the two segments 
separated by the crack [22]. Based on the research of 
Gudmundson and Gounaris, Nikolakopoulos pre-
sented the dependency of the structural eigenfrequen-
cies on crack depth and location in contour graph 
form. To identify the location and depth of a crack, 
the intersection points of the superposed contours that 
correspond to the measured eigenfrequency variations 
and caused by the presence of the crack should be 
determined [23]. With the model from Nikolakopou-
los, Suh presented a detection method that uses the 
hybrid neuro-genetic technique to identify the loca-
tion and depth of a crack on a structure [24]. Hu and 
Liang proposed a two-step procedure to identify 
cracks in beam structures. They used the effective 
stress concept coupled with Hamilton’s principle to 
derive a formulation relating the changes in the natu-
ral frequencies to the changes in member stiffness. 
While using the formulation, the elements containing 
the cracks could be identified. The spring damage 
model was used to quantify the location and depth of 
the crack in each damaged element [25]. 

In this paper, a finite element (FE) model is intro-
duced for crack identification in a static (non-rotating) 
rotor with an open crack. The effects of the location 
and depth of the crack on the mode shapes and the 
changes in the eigenfrequencies of the cracked rotor 
are investigated. A crack identification algorithm is 
proposed to estimate the crack location and depth in 
the rotor, and two illustrative examples are demon-
strated and compared for availability and validity of 
the proposed algorithm. 
 

2. Finite element model 

In Ref. [21-23], transfer matrix analysis is intro-
duced for the derivation of the stiffness matrix of the 

cracked element, and the FE model for the cantilever 
beam is presented. The present study uses an FE 
model simplified from the model by Ref. [21-23] to 
investigate the flexural vibration characteristics of a 
cracked rotor. 

A non-rotating rotor with a single open crack with 
depth da  and location 1Z  can be discretized into 
n  beam elements or subsystems. The schematic 
diagram is shown in Fig. 1, where each element has 
one translational and one rotational degree of freedom 
(DOF) for flexural vibration at each node. A crack on 
a beam element results in local flexibility due to the 
strain energy concentration near the crack tip under 
the load. According to the principle of Saint-Venant, 
the stress field is affected only in the region adjacent 
to the crack; the element stiffness matrix, except for 
the cracked element, may be regarded as unchanged 
under a certain limitation of element size [8]. For the 
uncracked beam element shown in Fig. 2, the corre-
sponding stiffness and consistent mass matrices are 
given as follows: 
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Fig. 1. Diagram of a rotor with a single open crack. 
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Fig. 2. Uncracked beam element. 
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Fig. 3. Cracked beam element. 



2966  G. M. Dong and J. Chen / Journal of Mechanical Science and Technology 23 (2009) 2964~2972 
 

 

2

2 2

e

2 2

156 22 54 13

22 4 13 3
420 54 13 156 22

13 3 22 4

l l

Al l l l l
l l

l l l l

ρ

⎡ ⎤−
⎢ ⎥

−⎢ ⎥= ⎢ ⎥−⎢ ⎥
⎢ ⎥− − −⎣ ⎦

M   (2) 

 
A cracked beam finite element with a crack depth 

da  at location cl  from its left endpoint is depicted 
in Fig. 3. Suppose that the crack only affects the stiff-
ness, and the element mass matrix is invariant. Due to 
the discontinuity of deformation in the cracked ele-
ment, it is very difficult to determine an appropriate 
shape function to express approximately the kinetic 
energy and elastic potential energy. To derive the 
stiffness matrix of the cracked element, the transfer 
matrix analysis that transfers the state variables (gen-
eralized displacements and forces) from one node to 
the other node is adopted (21)-(23), (26). The state 
vectors at positions i , j , LC , and RC  are as fol-
lows: 
 

{ , , , }T
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{ , , , }T
j j j j jx F Mθ=V   (3b) 

L L L L L{ , , , }Tx F Mθ=V   (3c) 

R R R R R{ , , , }Tx F Mθ=V   (3d) 
 

From the Euler-Bernoulli theory, the state vectors 
can be related as follows: 
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Due to the crack, the point transfer matrix cT , 
which relates the state vectors on the left and right 
sides of the crack, is 
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With regard to the cross section of a cracked rotor 
shown in Fig. 4, the local flexibility 11c , 22c  can be 
calculated as 
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Calculated by Simpson integration, the variations 

of the dimensionless flexibility with the relative crack 
depth d /a R  are shown in Fig. 5. 

From Eqs. 4(a-c), the following relation is ob-
tained: 
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Fig. 4. Cross section of a cracked rotor. 
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Fig. 5. Dimensionless local flexibility due to the crack.(┈ 11c , 
— 22c ) 

 
The transfer matrix c

eT  of the cracked element is 
written in the following form: 
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and the stiffness matrix of the cracked element can be 
readily computed [23], [24] as 
 

1 1
12 11 12c

e 1 1
21 22 12 11 22 12

− −

− −

⎡ ⎤−
= ⎢ ⎥

−⎢ ⎥⎣ ⎦

T T T
K

T T T T T T
.  (10) 

 
Assembling the element stiffness and consistent 

mass matrices to obtain the global stiffness and mass 
matrices, the model of the cracked rotor in bending is 
set up in the following form: 
 

2( ) { }ω− + =M K x 0 .  (11) 
 

Based on the above equation, the eigenvalue analy-
sis is carried out and used to investigate the vibration 
characteristics of a rotor with a single open crack. 
 

3. Vibration analysis 

In the simulation, the rotor geometries and material 
properties are given as follows: 3L = m, 0.3v = , 

112.07 10E = × N/m2, and 37.7 10ρ = × kg/m3. 
 

3.1 Effects of the relative crack depth 

For a rotor with a slenderness ratio / 8L D =  and 
crack location 1 / 0.45Z L = , a parametric study of the 
effect of the crack depth on the vibration characteris-
tics of the rotor is carried out by varying the relative 

 
 
Fig. 6. Variations of the normalized eigenfrequencies with 
relative crack depth for a rotor with a certain slenderness 
ratio and crack location. 
 

crack depth d d /a a R= . The cracked rotor is discre-
tized into 10 beam elements. The variations of the 
first three normalized eigenfrequencies ci ni/ω ω  
( 1,2,3i = ) with the relative crack depth are shown in 
Fig. 6. For a given crack location, it can be seen from 
Fig. 6 that for a given crack location, the changes in 
eigenfrequencies of the cracked rotor monotonically 
increase with the increment of the crack depth, such 
that if the crack location is known in advance, the 
crack depth can be read out from the changes in ei-
genfrequencies. It can also be seen from Fig. 6 that 
the change in the first eigenfrequency with a crack 
present is significant because the crack is close to the 
antinodal point of the first mode. In contrast, the 
change in the second eigenfrequency is quite small 
because the crack is near the nodal point of that mode. 
In addition, a large drop in the eigenfrequencies re-
sults from the increment of crack depth for a given 
crack location in the rotor. Thus, it can be concluded 
from Fig.6 that if the crack location is known in ad-
vance, the crack depth can be read out from the 
changes in eigenfrequencies. 

 
3.2 Effects of the crack location 

For a cracked rotor with a slenderness ratio / 8L D=  
and certain relative crack depths d 0.2,0.4,0.6,0.8,1.0a = , 
the variations of eigenfrequencies with different crack 
locations 1 /Z L  are shown in Fig. 7. It is clear that 
the changes in the first two normalized eigenfrequen-
cies ci ni/ω ω  ( 1,2i = ) show a symmetric property 
because the symmetry of the rotor is considered. It 
can be concluded from Fig. 7 that the changes in 
normalized eigenfrequencies depend on how close the 
crack is to that the mode of shape node, that is, the  



2968  G. M. Dong and J. Chen / Journal of Mechanical Science and Technology 23 (2009) 2964~2972 
 

 

 
(a) Variation of the first normalized eigenfrequency 

 

 
(b) Variation of the second normalized eigenfrequency 

 
Fig. 7. Variations of normalized eigenfrequencies with crack 
location as a relative crack depth is invariable. 
 

reduction in the eigenfrequency of a mode is larger if 
the crack is near the antinodal point of that mode 
shape. 

As the relative crack depth and variations of eigen-
frequencies are known, two possible crack locations 
are obtained. Combining the previous discussion on 
the effects of relative crack depth, a contour diagram 
of crack location versus crack depth for the first two 
normalized eigenfrequencies is used to obtain two 
possible cracks.  

 
3.3 Comparison of the mode shapes between the 

cracked and uncracked rotor 

The corresponding mode shapes for the first two 
eigenfrequencies of the rotor with slenderness ratio 

/ 8L D = , crack location 1 / 0.45Z L = , and relative 
crack depth d 0.6a =  are shown in Fig. 8, wherein 
the cracked rotor is discretized into 100 beam ele-
ments for better resolution. In Fig. 8, the changes in 
the first mode shapes are more obvious on the left 
side of the rotor, which show that the first mode shape 
is helpful in selecting the true crack location from the 

 
(a) First mode 

 

 
(b) Second mode 

 
Fig. 8. Mode shapes of a rotor with a certain slenderness ratio, 
crack location, and relative crack depth. 
 

two possible cracks. 
 

4. Crack identification 

Based on the above analysis, a crack identification 
algorithm is proposed, in which the contour diagram 
of the crack location versus crack depth for the first 
two normalized eigenfrequencies is calculated to es-
timate two symmetric candidates for crack location 
and depth. The deflections of the first mode are then 
used to erase the symmetric property and determine 
the actual crack location. That is, if the deflection of 
the point on the left side of the rotor is larger than that 
of the point on the right side, the crack is located on 
the left side of the rotor, otherwise on the right side. 
The flow chart of the algorithm is presented in Fig. 9. 

The first crack identification problem is stated as 
follows. The slenderness ratio of a cracked rotor is 

/ 8L D = , and the first two normalized eigenfrequen-
cies are c1 n1/ 0.9980ω ω = and c2 n2/ 0.9959ω ω = . 
The contour diagram of the crack location versus 
crack depth for the given normalized eigenfrequen-
cies is shown in Fig. 10. In Fig. 10, the read out  
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Fig. 9. Flow chart of the crack identification algorithm. 
 

 
 
Fig. 10. Contour diagram of the crack location versus crack 
depth for first two normalized eigenfrequencies c1 n1/ω ω =  
0.9980 , c2 n2/ 0.9959ω ω =  of the cracked rotor. 
 

  
Fig. 11. Contour diagram of the crack location versus crack 
depth for first two normalized eigenfrequencies c1 n1/ω ω =  
0.9181 , c2 n2/ 0.9411ω ω = of the cracked rotor. 
 
shows that the two possible crack locations are 

1 / 0.243Z L =  and 1 / 0.757Z L = , and the relative 
crack depth is d 0.2105a = . The deflections of the 
two symmetric points on the left and right sides are 
0.72 and 0.7, respectively. As the deflection of the 
point on the left side of the rotor is larger than that of 
the point on the right side, the crack is located on the  

Table 1. Comparison between the predicted and actual results 
of the first example. 
 

 Predicted results Actual results Errors 

1 /Z L 0.243 0.25 2.8% 

da  0.2105 0.2 5.25% 

 
Table 2. Comparison between the predicted and actual results 
of the second example. 
 

 Predicted results Actual results Errors 

1 /Z L 0.3464 0.35 1% 

da  0.7951 0.8 0.6% 

 
left side of the rotor. The crack location 1 / 0.243Z L =  
and the relative crack depth d 0.2105a = are the final 
predicted results.  

The second crack identification problem is stated as 
follows. The slenderness ratio of a cracked rotor is 

/ 8L D = , and the first two normalized eigenfrequen-
cies are c1 n1/ 0.9181ω ω =  and c2 n2/ 0.9411ω ω = . 
The deflections of the two symmetric points on the 
left and right sides are 1.0005 and 0.9002, respec-
tively. As the deflection of the point on the left side of 
the rotor is larger than that of the point on the right 
side, the crack is located on the left side of the rotor. 
The contour diagram of the crack location versus 
crack depth for the given normalized eigenfrequen-
cies is shown in Fig. 11. According to this figure, the 
two possible crack locations are 1 / 0.3464Z L =  and 

1 / 0.6536Z L = , and the relative crack depth is 
d 0.7951a = . As the crack is located on the left side of 

the rotor, the crack location 1 / 0.3464Z L =  and the 
relative crack depth d 0.7951a =  are the final pre-
dicted results.  

The predicted crack depth and location are com-
pared with the actual results in Tables 1 and 2. It can 
be seen that the error is very small, illustrating the 
validity of the proposed crack identification algorithm. 
Compared with the results in Ref. [27], in which a 
continuous model of cracked rotor is presented, the 
prediction error is slightly larger for the FE model of 
this paper. However, the FE model has more flexibil-
ity for engineering requirements. 
 

5. Conclusion 

An FE model is introduced for crack identification 
of a static (non-rotating) rotor with an open crack. 
The stiffness matrix of the cracked element is ob-
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tained using transfer matrix analysis and local flexi-
bility theorem.  

The changes in eigenfrequencies monotonically in-
crease with the increment of the crack depth for a 
given crack location in a cracked rotor. Because of 
the symmetry of the rotor, the changes in eigenfre-
quencies with different crack locations show a sym-
metric property, and their changes depend on how 
close the crack is to one of the mode shape nodes. If 
the first two eigenfrequencies are known in advance, 
two possible cracks can be predicted at the symmetric 
locations on the rotor, but the first mode shape can be 
used to select the true crack location from the two 
possible cracks. 

A crack identification algorithm that makes use of 
the translations of the first mode at two symmetric 
points and contour diagram of crack location versus 
crack depth for first two given normalized eigenfre-
quencies is proposed to estimate the crack location 
and depth in the rotor. Two illustrative examples are 
demonstrated and compared for the availability and 
validity of the proposed algorithm. 
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Nomenclature----------------------------------------------------------- 

da  : Crack depth 
da  : Relative crack depth 
1Z  : Crack location of the rotor 

A  : Cross-sectional area 
L  : Length of the rotor 
R  : Radius of the rotor 
D  : Diameter of the rotor 
E  : Young’s modulus 
v  : Poisson ratio 
ρ  : Material density 
I  : Moment of inertia 
l  : Length of the element 
cl  : Crack location from the left endpoint  

  on an element 
11c , 22c  : Local flexibility  
11c , 22c  : Dimensionless flexibility  

K  : Global stiffness matrix 

eK  : Stiffness matrix of uncracked element 
c
eK  : Stiffness matrix of cracked element 

M  : Global mass matrix 
eM  : Element consistent mass matrix 

1T , 2T  : Transfer matrices  
cT  : Point transfer matrix due to the crack 
c
eT  : Transfer matrix of cracked element 
iV , jV , LV , RV  : State vectors at positions i ,  

  j , LC , RC  
ix , jx , Lx , Rx  : Translations at positions i ,  

  j , LC , RC  
iθ , jθ , Lθ , Rθ  : Rrotations at positions i , j ,  

  LC , RC  
ω  : Eigenfrequency of the rotor 

c1ω , c2ω , c3ω  : First three eigenfrequencies  
  of cracked rotor 

n1ω , n2ω , n3ω  : First three eigenfrequencies  
  of uncracked rotor 
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